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Comments on the a-peak shapes for relaxation in 
supercooled liquids 

M Fuchs, W Gotzet, I Hofacker and A Lata 
Physik-Department, Tedmische Universitit Miinchen, D-8046 Garching, Federal Re- 
public of Germany 

Received 31 January 1991, in final lom 21 April 1991 

Abstract. The e-peak m t e r  functions hs obtained within the mode coupling 
theory for the supercooled liquid dynamics near the 91- transition singularity are 
discussed. Double peak phenomena are found 84 a generic feature of the theory re- 
lated to the self crossing of the transition hypersurface. They lead to two scenarios 
for liquid to glass transitions characterized by e'-e-peak pairs and by o - " x e s  
accompanied by 7-peaks. An efficient numerical procedure is developed lor the s o  
lution of the non-linear scaling equations for the master functions. A schematic 
three component model is used to fit quantitatively the dielectric loss spectra of 
polyvinylscetate, ortlmterphenyl, CaKNOj and poly propylene glycol, which all 
deviate strongly from the Kohlrausch decay pattern. The model yields also triple 
resonances of o7-S-peaks. 

1. Introduction 

The a-relaxation process is a characteristic feature of the dynamics of those super- 
cooled iiquids which exhibit a glass transition. It describes the slowest part of the 
outocorrelation functions + ( t )  of variables like mechanical stress, dielectric polariza- 
tion 0: density fluctuations. I t  shows up as a low frequency spectrum ~ " ( w )  in various 
susceptibilities as measured e.g. by dielectric loss spectroscopy and Brillouin or neutron 
scattering experiments. For a review the reader can consult the books by McCrum 
el a1 (1967), Wong and Angel1 (1976) or Brawer (1985). In this article some details 
of the !'ariation of + with time t or of ~ " ( w )  with frequency w will be considered. 
Some examples for the a-relaxation stretching phenomena will be quoted and it will 
be demonstrated that a simple version of the mode coupling theory, to be abbreviated 
as MCT, can account for the data. For a summary of the MCT the reader is referred 
to a recent review (Sjogren and Gotze 1989). 

Stochastic relaxation, as described by the Debye law Qa,(t) = f exp -(t /r) ,  implies 
a decay from 90 to 10% within a time interval of 1.34 decades. Such a relaxation is 
never observed in glassy materials. Rather the time interval for the specified 80% 
decay is stretched to much longer values. The stretched exponential function 

aK(t)  = fexp-(t/r)P p < 1 (1) 

t Also at: Max-Planck-Institut fiir Physik und Astropksik, D-8000 Miinchen, Federal Republic of 
Germany. 
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(Kohlrausch 1854, Williams and Watts 1970, Ngai 1979), is the best of all simple fit 
formulae for the or-process. The short time part of (1) is a power law decay 

* ( d )  = f - (+)b + O((t/.)Z6). (2) 

This fractal time variation is often observed for dynamical ranges of 2 to 3 decades 
(von Schweidler 1907, Jonscher 1977). It implies a similar power law decay for the 
large frequency part of the a-spectrum, NT > 1: 

~ " ( w )  = fsin((r/2)6)I'(l + 6 ) / ( w ~ ) ~  ~ ' ( w )  - xo  = fcos((s/2)6)I'(1+ 6 ) / ( w ~ ) ~ .  

(3) 

The known connections of XI', x' and Q! via Fourier transforms have been used. The 
Debye relaxation resonance &(U)  = f(wr)/(l + (UT)') has  a half width of 1.14 
decades. The stretching implies peaks which are much broader. The Kohlrausch law 
(1) essentially models the stretching via the slowly decaying von Schweidler asymptotic 
tail (2). If the von Schweidler law and the Kohlrauach law both were valid, one would 
get p = 6. 

Since correlation functions behave regularly for small times, there must be a small 
time cut-off and a corresponding large frequency limit for the a-process: 

1,  << t w g: wc = l / t c .  (4) 

Often one writes the correlation function as Laplace transform 

The correlator Q, is represented as a superposition of Debye laws, where p(7) is the 
weight for the relaxation process with decay constant 7. Experiments suggest that 
@(t) is completely monotonic and therefore p ( y )  0. Stretching is equivalent to a 
broad distribution of rates 7. 

The a-relaxation functions depend strongly on control parameters like the tem- 
perature T. Often one finds the time temperature superposition principle to be valid: 

Q,P(Wf = w4. (6) 

Here F is a master function which shows no, or only weak, T-dependence. The drastic 
T-dependence enters via the scale T of the a process. The scaling law (6) is equivalent 
to similar ones for the susceptibility spectrum 

or for the rate distribution 

P(7) = F(7+ ( 8 )  

Here again the master functions f" and F depend on T only smoothly if at all. For 
the simple fit formulae (1) or (2) the scaling law is equivalent to the temperature 
independence of the exponents p or 6 respectively. 



a - p e a k  shapes for relaxation i n  supercooled l iquids 5049 

Equation (5) suggests the explanation of stretching in disordered materials as 
parallel relaxation process: with probability p(y) there is some complex which relaxes 
with rate 7 (von Schweidler 1907). This picture is quite appropriate for a variety 
of situations. Exciton line shifts are caused by van der Waals interactions and the 
distribution of pair distances leads to the distribution of rates 7. One finds (1) with 
exponent @ = 1/2 (Forster 1949). Assuming different interactions one gets different @ 
(Blumen 1981). Near second order phase transition points a system can be described 
in a droplet picture. The distribution of droplet sizes yields non-trivial p ( 7 )  and 
the critical fractals lead to the Kohlrausch law (1) (Piazza et a1 1988). There is no 
obvious reason why the quoted physical mechanisms should be relevant in general to 
explain the a-process in supercooled liquids. The validity of the scaling law ( 5 )  is also 
an argument against the picture of independently relaxing complexes (Williams and 
Rains 1972). 

The free volume theory (Cohen and Grest 1979) associates the glass transition 
with a percolation threshold, which is reached upon lowering the temperature to some 
To. To is located near and below the transformation temperature T,. The critical per- 
colation cluster introduces fractal structures in space and this leads to the Kohlrausch 
law. Two predictions are made (Cohen and Grest 1981): @ 2 1/2 and for T + To 
the a-relaxation time r= for some relaxation process should be proportional to the 
relaxation time ra for shear motion. There are experiments with @ smaller than 0.5 
(Williams and Watts 1970, Frick et a1 1990) and even some with p smaller than f 
(Ngai 1979). Others show a decoupling of relaxation processes in the sense, that rz/r3 
increases as fast as rs itself for T -+ To (Ehlich and Silescu 1990, Riissler 1990). There 
is uo experimental evidence for fractal structure in space for T m Tg. 

The Kohlrausch law was derived also for the dynamics of certain spin glass mod- 
els. A random walk theory produced (1) with the prediction that @ should decrease 
towards 1/3 if the temperature decreases towards some To < To. The scaling law 
(6) is predicted to hold if and only if for high temperatures p = 1 (Campbell et a1 
1988, Flesselles and Botet 1988). Also a master equation approach for the d y n m -  
ics of the Sherrington-Kirkpatrick spin glass model predicted (1) with a temperature 
dependent @. In addition an Arrhenius law for r was obtained (De Dominicis et a1 
1985). Arrhenius laws are invalid for many structural glass formers. On the basis 
of dynamical light scattering data for CaKNO, (Pavlatou et a1 1990) and extensive 
Brillouin scattering results for propylene carbonate (Borjesson et  a1 1990) was argued 
against the applicability of theories with T-dependent @ for structural glass formers. 

Palmer et a1 (1984) pointed out that a broad distribution of rates p ( y )  is expected 
for hierarchically constrained relaxation processes. One complex transfers the pertur- 
bation to the next only after the earlier complex has already relaxed. Unfortunately, 
so far it h a s  not been possible to substantiate that picture. It is unclear e.g. whether 
(5) is valid. In any case it is not known whether different processes are ruled by a sim- 
ilar r or not. No specific form for the function @ ( t )  could be derived; the Kohlrausch 
law (1) was obtained only from an unmotivated assumption on a fractal distribution 
for the transfer rates. 

2. Examples for a-relaxation susceptibilities 

Many experimental data, reviewed by Ngai (1979), show that (1) is a reasonably 
satisfactory representation of a major part of the a process of a variety of glass for- 
mers. This holds also for the relaxation of density fluctuations as detected recently 
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in the GHz band by neutron spin echo spectroscopy for CaKNO, (CKN) by Mezei el 
a/ (1987), for polybutadien (PB) by Richter e l  a i  (1988) and Frick e l  of (1990), and 
for orthc-terphenyl (OT) by Petry ef of (1991). The a-relaxation process, as identi- 
fied by molecular dynamics for simple model systems has also been fitted well by the 
Kohlrausch law (Roux et a[  1989, Signorini el ai 1990, Barrat el a/ 1990). Let us 
mention as a particularly convincing confirmation of (1) with p = 0.74 the measure- 
ments of Howell el a/ (1974) for CKN in the temperature interval between 25% and 
54°C (T, = 60°C). The dielectric modulus was tested on a frequency region extending 
over 4.5 decades. In this manner 95% of the a peak was mapped out. 

56 

Figure 1. Reactive part M' and absorptive part M" of the CKN dielectric modulus 
at 71.4% (triangles) together with a Kohlrauschfit with exponent 0 = 0.64 (broken 
curves) from Howell et  01 (1974). The dotted curves are won Schweidler asymptotes 
(2) for exponent b = 0.44. The chain eurve~ are fits to the stochwtk behaviow 
M' 0: 2, M" D: U. The full cum- are MCT results for the model (40) and (41), 
specified in the texh. 

In order to judge the relevance of a test of (1) it is important to consider the dy- 
namical window and the part of the process which has been analyzed. Three examples 
shall be considered in detail to reiterate this statement. Figure 1 reproduces a dieleo 
tric modulus of CKN together with a best fit to the Kohlrausch function (Howell ei a/ 
1974). Formula (1) describes well the upper half and the complete low frequency wing 
of the a-peak. But  i t  fails to describe the large frequency modulus for w/w,,, > 15, 
where M"/M,,,, < 0.4. The measured spectrum M" differs from the Kohlrausch 
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spectrum by 100% in the one decade window f = lo5 Hs. Extrapolation of M'(w) to 
M ,  = M'(w + ea) with (1) systematically underestimates the true value for the high 
frequency modulus M,. However the major part of the high frequency wing where 
M"/M,,, < 0.85 is described well by the von Schweidler law; i t  follows the data  for 
the 2.5 decade window where f > lo3 Hz (Fuchs et 01 1990). For the description of the 
large frequency wing of the a-resonance, formula (2) is superior to (1). Since b < 0, 
one cannot treat (2) as special limit of (1). The chain curves in figure 1 represent 
the low frequency asymptotes M" = cow and M' = c l w z .  Such regular variation is 
obtained for w + 0 for all correlators which have finite moments e, = dt  t"+(t). 
These moments exist for the Kohlrausch law as well as for the Debye law. The low 
frequency wing where M"/M,,,, < 0.4 is weU described by the regular behaviour. 
The data  do not exhibit any small frequency stretching anomaly. The Kohlrausch law 
has an essential singularity for large times, which results in an essential singularity for 
the zero frequency susceptibility. The figure shows that measurements in frequency 
space are not suited to test this implication of (1). 

The observations made above are not restricted to the anorganic glass former 
CKN. Kohlrausch (1854) has already pointed out that his data set with the largest 
dynamical window exhibited systematic deviations from his fit formula (1). Also, 
Williams and Hains (1972) noticed small but systematic discrepancies between fit and 
data. Figure 2 shows the effect for some of their measurements obtained for the organic 
glass former OT. Figure 3 shows an a-resonance for polyvenyl acetate (PVA) measured 
by Ishida et al (1962). The organic glass former OT and the polymer PVA also show 
that the Kohlrausch fit works for the upper part of the resonance. I t  describes the 
low frequency wing in the same manner as a non-stretched relaxation function and it 
fails for the large frequency wing of the peak. In both examples the von Schweidler 
law is an adequate description of the dynamics for w/w,, >> 1. 

0.6 

0 .L  

0 

Figure 2. Dielectric loss data m e a s u d  for OT with 4.2% anthrone by Williams and 
Hains (1972) replotted as e " l e m a x  vmus w/umbx diapam. Symbols. temperatures 
in K and fmu in Hz are the following: 0, 255.5, 9.5; U, 258.6, 40; 0, 263.0, 320; A ,  
267.1, 2.4 x103. The broken curve is a Kohlrausch spectrum with exponent 0 = 0.55 
and the dotted one is the yon Schweidler asymptote (2) with b = 0.41. The chain 
CUTM is the Debye rrsonance. The full E- is a MCT result for model (40) and (41), 
specified in the text. 

There is no consensus in the literature concerning the question of which part 
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1.0 

0.5 

0 

Figure 3. Dielectric loss data measured for PVA by Ishida et d (1962), replotted 
w c"/m VBSUS f/fo diagrams. The units CO. fo are m i m u m  value and T ~ S O M ~ C E  

position for the 62.5OC data, denoted by drcla.  The squar- refer to the data for 
53.5- (.fmax = 8.8Hz), diamonds to 70.0° [fmaX = 1.2 x lO'Hz), triangles to 77.0' 
(fm.. = 5.5 x 103Hz), crases to 83.5* (fmai = 2.6 x 10'Hz). The broken curve 
is a Kohlrausch spectrum with p = 0.58 and the dotted one is the von Schweidler 
asymptote with b = 0.44. The chain ~ l v e  is a Debyc re8omcc shifted to low 
frequmcies. The full curye is a MCT result for model (40) and (411, specified in the 
text. 

of the high frequency spectrum should be accounted for as an &-process and which 
should be attributed to some other dynamical feature. There is no precise purely 
empirical definition of the cut-off frequency wc in (4). Therefore one cannot rule out 
that wc is so small that the spectral parts of the high frequency &-peaks in figures 
1-3, where (1) is in contradiction to experiment, is excluded from the &-process. 
In our article this position is not taken for the following reasons. Figures 2 and 3 
exemplify the validity of the scaling law (6)-(8). This shows that data for various 
frequencies and temperatures are tightly connected. It does not seem meaningful to 
attribute parts of spectra which are so closely connected, as required by the time 
temperature superposition principle, to different physical processes. Data obeying 
(6)-(8) presumably refer to one cooperative phenomenon (Williams and Rains 1972). 
This argument does not apply to the quoted CKN data, since the o-scaling law (7) 
is not valid in the temperature range discussed in figure 1 (IIowell el  a[ 1974). The 
validity of the von Scbweidler law (2) over more than two decades frequency interval, 
shown in figures 1-3, appears also as an argument against dividing the window under 
consideration into two parts by introducing wc. In any case, wc would be located 
a t  least six decades below the band of phonon excitations or molecular vibrations. 
Hence wf is not connected with short time transient effects. The only physical process 
proposed so far for non-&-dynamics in the mesoscopic regime under discussion is 0- 
relauation. One has to remember that 0-relaxation scales differently from &-relaxation 
when changing T. Let U- and wp denote the respective resonance positions. The ratio 
wo/wp decreases strongly with decreasing T (McCrum et a1 1967, Wong and Angel1 
1976, Brawer 1985). Hence, a possible disturbance of &-relaxation by p-relaxation 
should decrease upon lowering T. The time temperature superposition principle (6)- 
(8) anticipates that such disturbances have disappeared already. Demonstrating the 
scaling law (7) in figures 2 and 3 means that no 0-process is detectable in those data. 
Lowering the temperature in CKN to 65.3'C or 60.1"C implies shifts of wm by more 
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than a factor of 10, but there is no indication that the discrepancy between data and 
a Kohlrausch fit decreases (Howell et a i  1974), nor does the interval for a successful 
von Schweidler fit shrink (Fuchs et a1 1990). 

The free volume theory brings out that (1) terminates at small ( t /r)  and crosses 
over to Debye relaxation (Cohen and Grest 1981). Thus the true susceptibility spec- 
trum is predicted to fall below the high frequency tail x’’ cc I/& of the Kohlrausch 
fit if w > U, and this is is just the opposite of what is found in the experiments of 
figures 1-3. 

The low frequency dielectric loss spectrum of polypropylene glycol (PPG) exhibits 
a double peak. A large peak at some frequency w, is accompanied by a small one at 
position w,, where the latter frequency is several orders of magnitude smaller than 
the former (Baur and Stockmayer 1965, Alper el a1 1976, Johari 1986, Fu e f  a1 1991). 
Also in dynamic Kerr effect measurements (Beevers et a1 1979) this phenomenon can 
be seen. Figure 4 reproduces a representative example of the dielectric loss spectra. 
A double peak pattern was also observed for the shear modulus of PB rubber with 
a bimodal molecular weight distribution (Sidorovich et a1 1974) and for Polyisoprene 
with a narrow moleciilar weight distribution (Adachi and Kotaka 1984, 1985, Imanishi 
et a1 1988). In the latter the intensity of the low frequency peak is higher than that of 
the high frequency one. Again the time temperature superposition principle is used to 
argue that both peaks do not represent different phenomena but rather are two facets 
of the same a-phenomenon. The scaling law (5) implies, for example, that w,/w,, 
should be temperature independent even though U, and w,, shift strongly with T .  It 
is difficult to test this law since the spectra extend over such huge dynamical windows 
as shown in figure 4. Baur and Stockmayer (1965), Sidorovich el a1 (1979), Alper el 
a1 (1976) and Adachi and Kotaka (1984) confirmed (5). But Beevers et a1 (1979) and 
Johari (1986) report a temperature dependence of w,/w,,. However, the variation of 
we/.,, in the latter work is much smaller than the variation ofw, and w,, themselves. 
Therefore it seems legitimate to consider the violations of the strict scaling (7) as the 
expected small temperature variations of the master functions F, ,f or p. In any 
case the extensive measurements of Fu e l  01 (1991) confirm the scaling law as shown 
in figure 5. The broken curve in figure 5 is a fit of the double peak by a sum of 
two Kohlrausch functions. Both peaks exhibit the usual stretching features. The 
Kohlrausch fit fails for the large frequency data in the same way as discussed above in 
connection with figures 1-3. The double peak phenomenon is experimental evidence 
against simple few-parameter fits for the a-relaxation process in glassy materials. 

3. Mode coupling theory of the a-process 

9.1. Glass tmnsi f ion  singularities 

For the purposes of this paper it its sufficient to adopt a formal point of view and 
consider the MCT as a mathematical model for the dynamics of a many particle system. 
The model is defined by equations of motion for a set of M correlators cP,(t), q = 
1, ..., M ,  which are normalized by O,(t = 0) = 1. The latter describe the dynamics 
in a statistical manner. The essential piece of the formalism is the mode coupling 
functional Fq, which is given by A4 polynomials of the M variables cPk. The various 
coefficients of the polynomials are the coupling constants of the theory. They are 
combined to a vector V in some N-dimensional control parameter space K. The 
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Figure 4. Dielectric loss of PPG at T=223.7 K messured by Johari (1986) (cireln). 
The full CUM is a MCT result calculated for the schematic model (40) and (41), 
specified in the text. The dotM nuveis thecomspondinE von Srbwader MYInPtOtC 
(2) with exponent b = 0.38. 

Figure 5. S- plat c''/cmaX VCPJUS w/w,,, of the measurements of Fu (1990) 
and Fu c i  sf (1991) for PPG. The temperature range extcrsda from 219 K lo  358 K 
and the Maling frequency wm.= varies between 0.7 Hz and 2.4 x IO8 Hz. The broken 
c u ~ e  is the sum of two Kohlrausch functim with exponents p = 0.57, P' = 0.70. 

components of V are non-negative. The state of the system is specified by V. The 
equations of motion determine the unique solution @,(V, t )  for every V. 

In applications to simple liquids the index q is a discretized wave vector mod- 
ulus. The correlators refer to the ones for the density fluctuations pq:  @*(t) = 
(pG(t)pq)/(lpqlz). In this case the polynomials consist of quadratic t e r m  only, 

where the vertices V(q;k,p) 2 0 are given by the structure factor of the system 
(Bengtzelius et al 1984). In other applications also Iinear and cubic t e rm enter the 
polynomials Fq. The vector V is a smooth function of physical control parameters like 
the temperature T.  So the system is described by a path T -+ V ( T ) .  Upon lowering 
T the path runs from the weak coupling to the strong coupling region. 
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The space K consists of three sets. There is the open small coupling region of 
liquid states DL; for V E DL one gets @,(t -+ 00) = 0. There is the open set of ideal 
glass states DG. For V E D, the glavr form factor f,(V) = @,(t - 00) is a smooth 
positive function of V and it is smaller than unity. The (N - 1)-dimensional set 0, 
of glass transition singularities contains the singular points V, of f ,(V).  The form 
factor is a solution of the M coupled implicit equations: 

(10) 
f - - e = F , ( V , f , )  O < f , < l , q = l ,  ..., M .  

1 - f ,  
If there are several solutions one gets the long time limit f , (V)  from the maximum 
property: f ,  < f ,(V).  The set D, is formed by bifurcation points of (10). These 
are located, where the stability matrix Ckp = (a&/af,)(l - f P ) *  has an eigenvalue 
unity. The stability matrix has  a non-degenerate maximum eigenvalue E(V), where 
E(V) < 1 for V E D,. An (N - 1)-dimensional bifurcation hypersurface 'H in K is 
obtained by 

E(V,) = 1. (11) 

The set D, is a subset of 'H, which is constructed with the aid of the mentioned 
maximum property. 

Upon lowering T the path runs from DL to D,; it crosses 'H at some singularity V, 
for T = T,. The temperature T, is the idealized liquid to glass transition temperature. 
Generically, 'H can be specified near V ,  by an implicit equation u(V) = 0. Here u(V) ,  
the separation parameter, is a smooth function of V so that: U < 0 if V E DL, U > 0 
if V E D,. One can expand u(V(T)) = CT(Tc - T)/T,, where C, > 0 is a constant 
in leading order for T -* T,. The asymptotic behaviour of the form factor reads 

f* = f i  + Ch,& + O(u) U -+ +O. (12) 

Here C > 0. f; > 0 is the form factor at the singularity V,. The critical amplitude 
h, > 0 is obtained from the stability matrix at V,. 

The dynamics outside the microscopic transient regime is specified by two smooth 
functions of V .  The microscopic time scale to(V) connects the mathematical time 
with the details of the motion for short times. The exponent parameter X(V), obeying 
1/2 < X < 1, characterizes the position of V ,  on 'H. In leading order calculations for 
T -+ T, both functions can be treated as constants. Parameter X determines the two 
critical exponents 0 < U < 1/2 and 0 < 6 < 1 of the theory by r ( l  - u)2/r(l - 2a) = 
X = r(l + b)*/r(l  + 2b) .  There appear two critical time scales which quantify the 
slowing down of the dynamics for T + T,: 

to = t 0 / 1 u p  t ;  = to/lul' y = ( U - ]  + b-1 )P (13) 
These two time scales govern the sensitive dependence of the low frequency spectra on 
T for small T -Tc. The subtle low frequency singularities of the spectra for U -+ 0 are 
proposed to describe the experimental findings of the dynamics of supercooled liquids. 
The dynamics on scale tb is called a-process and the one on scale 1, is referred to 
as p-process. Both processes are intimately connected and they overlap on the time 
interval 1 ,  << t << t b .  In this paper only those formulae and concepts are mentioned 
which are necessary to formulate the following new results. A more detailed summary 
of the MCT witb a reference list to the original papers can be found elsewhere (Gotze 
1991). 
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3.2. General results for ihe a-process 

The equations of motion of the MCT (Bengtzelius et a1 1984) imply (Gotse 1987): 

This is equivalent to 

@&r)  = Fq(t/r) t ,  &: t r = t: 

where 
F = F, for T = T,. Function F, obeys (Gotze 1984, 1987) 

is a smooth function of V, which approaches F for V -+ V, .  In leading order 

F,(i) = fi - Bh,ib + O(?*). (16) 

Here f:, h, have the same meaning as in (12); b is determined by X as mentioned 
above, and B > 0 is also given by A. The full function F9 is a solution of a non-linear 
equation solely fixed by the mode coupling functional for V = V ,  (Gotze 1987). The 
latter shall be rewritten in the form of an integro differential equation: 

m,(t) = Fq(%F&)). (18) 

In applications of the MCT, autocorrelation functions @= formed with variables X of 
even time inversion symmet.ry are reduced to polynomials of the correlators QP(t): 

@At) = F,(V, W)). (19) 

In the a-regime one can write V = V,. Obviously one gets from (19) 

where F, is independent of T in the limit T -+ 7'2. One gets also formulae like (12) 
and (E), where merely the quantities f P ,  h, have to be replaced by other numbers 
f,, h,, reflecting the properties of variable X. These results apply e.g. to the dielectric 
function or modulus, where X is the dipole moment or the fluctuating force on the 
currents respectively. For qualitative discussions of the dielectric loss spectra or of the 
die1ect:ic modulus one can directly use the properties of the @ ( 1 ) .  

An e5cient way to partly solve (17) is the extension of 416) to an asymptotic 
series in powers of t*. Numerical work indicates that this series has a finite non-zero 
radius of convergence. The solution of (17) is uniquely determined for all t by the 
solution within any small initial time interval 0 < t < L (Hofacker 1990). One can 
show F > 0 and F < 0 (Gotse and Sjogren 1987a). Generically the Kohlrausch law is 
not a solution of (17). 

Equations (15) and (20) are the time temperature superposition principle (5), 
which is obtained within the MCT as asymptotic law for temperatures decreasing 
towards T,. The time t: is the scale for the a-processes. As cut-off time t ,  in (4) 
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the scale t ,  is found. It is not the microscopic scale to;  rather it is a critical quantity 
which characterizes the center of the P-process. The von Schweidler law follows from 
(16) as the description of the large frequency wing of the a-spectrum. It describes 
the dynamics on the interval t, < t < t b .  The exponent b is the same for all 
correlators measured at the same transition. But exponent b is not universal, different 
systems may exhibit different values for b .  It is plausible (Gotze and Sjogren 1987a) 
and supported by numerical solutions of (17) that there is no low frequency anomaly 
of the a- relaxation master function. With some reservation because of a lacking 
mathematical proof, one concludes that there is no stretching anomaly on the low 
frequency wing of the a-peaks. Unless there is some specialty, one gets a bump for the 
ol-spectrum, which is asymmetrically stretched by the von Schweidler process. The 
latter is the essence of the stretching phenomenon. Let us emphasize that the fractal 
exponents in (2) and (16) have been obtained as general implications of the dynamics, 
connected with the bifurcation as described by the elementary equation (10). No 
fractals have been assumed or built into the basic equations of the MCT. In particular, 
no fractals have been assumed or obtained for variations in configuration space. 

9.3'. Double peak phen.omena 

9.3. I .  Crossing singularities. The bifurcation hypersurface 'H, mentioned above in 
connection with (10) and (11) consists of several smooth pieces. The inner points of 
these pieces are Whitney fold bifurcation singularities, as is obvious from (12). Two 
such pieces may be joint on (N - 2)-dimensional sets 'H' of Whitney cusp bifurcation 
singularities. Two pieces may intersect forming (N - 2)-dimensional sets 'HK of cross- 
ing points (Gotze and Haussmann 1988). Inherently cusp points do not have liquid 
states Y E DL in their neighborhood. Figure 6 illustrates the various possibilities by 
a twc-dimensional cut through the parameter space E .  The U,, - u1 parameter plane 
is shown to cut three pieces of 'H in lines. A full line, denoted by (2), is joint by some 
other line, shown as a chain curve, in a cusp; the latter is marked by a circle. A third 
line denoted by (1) and shown partly as a full line and partly dotted, crosses the line 
(2). 

Figure 6. uo -V I  paramet6 plane cut thmugh the parameter space li. See text for 
details. 
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The two surface pieces, which form a corner, enter the dynamical theory asym- 
metrically: on one surface say 'It('), all glass form factors fj') are smaller than the 
corresponding ones fp) on the other surface, say %(') (Gotae 1991). 

fp(v,) < fj''(V,) q = 1,. . . , M ,  v, E X K .  (21) 

The continuation of 7d') through E('), indicated in dots in figure 6, does not belong 
to the set 0, of glass transition singularities. The bifurcation points of (lo), which 
occur on this part of X('), have no relevance for the glass form factor f , ( V ) ,  as it 
occurs for the correlators in the long time limit. 

Generically the path V ( T )  does not hit the corner V,. But it may come close to 
V,, as indicates by the dot in figure 6. In that case the slow dynamics will reflect 
the glass transition precursor as caused by the two possible transitions. The tendency 
for arrest at fp) governs the first process for times exceeding to&). It is ruled by 
the exponent parameter X(')(V,) and the exponent a(*),b(') for 'It('). @,(t) approach 
fy) as critical decay f$') + /$)/to"'. It performs the a- process for 7d2) which 
is started with the corresponding von Schweidler law aP,(t) - fi') 0: 4':. This 
a-process produces susceptibility peaks at some U!?. For longer times the system 
is close to an arrest at fJ1). The corresponding dynamics is characterized by the 
exponent parameter A(')(V,) and the connected exponents dl), 6(') .  The P-process 
is introduced by the critical decay towards f;'), which then crosses over to the von 
Schweidler behaviour for E('):  @q(t )  - fi') 0: -1 . Susceptibility peaks are formed 
at some w?', which correspond to the a-proces, of '7d'). Therefore a two peak pattern 
is created. One peak at wb" has area I(') - f(l). It is accompanied by another peak 
at some lower frequency < U$,'), which has area f('). The closer V is to the 
corner V,, the more the peaks are separated. Both peaks are connected with the full 
or-&relaxation pattern of the respective transitions. The relative size of the two peaks 
depends on the details of the model. 

There are two relevant control parameters, which govern the sensitive variations 
of the spectra due to the changes of physical parameters like the temperature. These 
are the two separation parameters ul(V) and uz(V),  characterizing the two pieces 
'It(') and 'Id'). There are two generic possibilities for a liquid to glass crossover 
near a corner. Either V -+ V ,  E 'H('). In this case U' -+ 0 for T -+ Tc, while 
the other parameter approaches some constant ul(V) -+ ul(V!')) =: X ( ' )  < 0. Or 
V -+ V ,  E X(*). In this case ul + 0 for T - T and the other separation parameter 
tends to some constant uz(V) -+ uz(x) =: Xf ' )  < 0. The asymptotic variation of 
the double peak pattern for T -+ T, is quite different for the two scenarios. 

3.3.2. The a'-a-scenario. Let us consider the transition through 7dZ) on a path 
similar to the one indicated in figure 6 by a line marked a-d. For T -+ T, the 
longest timescale is the a-relaxation scale wh" for the transition at V, E 7d'). It 
diverges for T - Tc, while the scales connected with U, remain finite. The whole 
double peak pattern obeys the time temperature superposition principle in the leading 
asymptotic expansion. The solution of the scaling equation (17) and (18) yields the 
two peak master function; it does not contain the @-relaxation part of the transition 
through 'It('). Its large frequency asymptote is the von Schweidler law with exponent 
b('). The low frequency peaks exhibit the full .-p pattern of the transition through 

$P) 
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E('), as it is determined by the separation parameter X ( ' ) ,  It dependssensitively on 
X('); in particular the a'-peak moves down in frequency if X ( ' )  is lowered. This is 
illustrated in figure 7. The a-scaling law holds only in that limit, where temperature 
dependence of X( ' )  can be neglected. This is the case only for very small (7' - 
Tc). Therefore one gets stronger deviations from the time temperature superposition 
principle for the double peak scenario, then one usually gets for transitions away 
from crossing singularities V,. Obviously these findings qualitatively explain the 
experiments, discussed in connection with figures 4 and 5. 

0.2 

X" 

0.1 

0 

Figure 7. Master functions for the a-proass for the transition points noted in 
figure 6. The broken mm is a shifted master function for a transition through U(') 
calculated at the point "ked by a star in f i p e  6; see text. 

9.9.3. The y-peaks. The evolution of the low frequency spectra upon approaching 
X(') can be inferred from the preceding discussion. A possible path is indicated in 
figure 6 by a line marked a-y. For small X ( 2 )  one gets double peak patterns described 
by master functions calculated from V ,  E 7d2). However, only the scale of the low 
frequency peak connected to u1 varies critically. The sequence of spectra shown in 
figure 7 describes such a scenario where the a-peak connected with E@) appears as 
a specialty of the high frequency dynamics. For the mathematical discussion of the 
transition, the upper peak is treated as a transient dynamics, where the time scale 
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is short and smoothly varying compared to the scales ruling the transition. Solving 
the scaling equation (17) and (18) at V, E 7d1), eliminates the @-contribution of this 
transition and the spectrum above it. It yields the a-relaxation part of the 'Id')- 
transition only. This is illustrated by the broken curve in figure 7. I t  shows a shifted 
master spectrum, calculated at the point on X(') which is marked by a star in the 
phase diagram of figure 6. For small u1 the *relaxation scales onto this master 
function. 

The spectral peak above the glass transition spectrum is different in three aspects 
from what one expects for some molecular resonance. Its position is located far below 
what is typical for microscopic transient dynamics, the position is rather sensitive to 
control parameter variations and the peak is stretched. The upper peak is different 
from a typical a-resonance since it exhibits stretching and fractal behaviour not only 
on the high frequency part but also on the low frequency one. The stretching on the 
upper part is caused by the von Schweidler law with exponent b(*). The stretching 
on the lower part is due to the critical spectrum of the transition through 7d'). The 
corresponding exponent is a('). This may lead to rather symmetrical peaks as shown, 
accidentally, in figure 7. The upper peak is also different from a standard @-resonance. 
The latter are typically much broader and their intensity is smaller than the upper 
resonance shown in figure 7. All these findings support the conclusion that the found 
scenario is the relevant one for the pattern of an @-resonance which is accompanied 
by a high frequency 7-peak (McCrum e t  al 1967). 

The essence of the preceding discussion is the following: near a corner a double 
peak structure of the susceptibility spectrum is found. Whether this is interpreted as 
a4-01 a-y-pair depends on the variation of the spectrum as a function of tempera- 
ture. 

3.9.4. It-iple peak scenarios. Obviously, the preceding discussion can be generalized. 
The next, more complicated, case deals with a corner V,, where three hypersurface 
pieces, say 'H('),?c(2) and 7d3) meet. The surfaces are put in a sequence, generalia- 
ing (21) 

q=1,  ... 

There appear three a-peaksoffrequenciesw6'' < U&') < uL3) with areas fq (1) , fi (2)  -fq (1) 

and fp ) - f i z )  respectively. There are three scenarios for a liquid to glass crossover. If 
is crossed, the whole three-peak pattern obeys the time temperature superposition 

principle. Such a scenario was observed recently for a system of PPG with lithium ions 
as solute (Fu el al 1991). If W(') is crossed, there will be a double peak pattern, 
which scales as discussed in connection with figures 4 and 5. Above this pattern there 
is a 7-resonance. if 7d') is crossed, there will be a normal relaxation pattern for a 
liquid to glass crossover, consisting of the temperature or concentration dependent a- 
and @-spectrum. Above those spectra are two stretched resonances, a y-peak and a 
6-peak. 

3.4. Solufion of the scaling equation 

A previously used iteration procedure for the numerical evaluation of the master func- 
tions Fe,@) required one Laplace transform and one back transform in every iteration 
step (Gotze and Sjogren 1987a). This procedure is not practical in the present context, 
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since Laplace transforms are very cumbersome for functions, which are structured and 
stretched on such large windows as shown in figure 5. Therefore an iteration procedure 
for the solution of (17) and (18) will be used, which exploits the causality properties of 
the MCT: the functions F&t) are determined by the correlators Fk(t') where t' precedes 
t .  At the end of the procedures Laplace transforms F,(z) of the correlators and m ( z )  
of the kernel (18) are calculated, I = w + 20. The correlators yield the susceptibility 
~ ' ( w )  + ""(w). The kernels are used as a global check for accuracy, by verifying the 
Laplace transformed version of (17) and (18). 

s. 

F&) = -l/[z - l/mq(I)]~ (23) 
The functions F ( t )  and m(t) vary more slowly for large times than for small ones. To 
separate slow and fast variations in the convolution integral in (17), one writes with 
7 = t/2: 

t 

I = 4 m(t - t ' )F(t ')  dt' 
.. 

= F(r)m(r) + lT rh(t - t ' )F(t ')  dt' + $(t - t')m(t') dt'. (24) L7 
Let us consider the following integral extended over t ,  < 1 : t , :  

I = A(t - t ')B(t') dt'. (25) 

I = [A(t  - t l )  - A(t - t 2 ) ] ( t 2  - t1)-' B(t') dt' + 0. (26) 

I 
It can be written as 

I 
The first term is of order h = ( tz - t l )  while the second one, 

0 = / { [ A c t  - t') - (A(t - t , )  - A(t - t,))/h][E(t') - / dt"B(t")]} dt' (27) 

is of order h3. The approximation consists of dropping 0 for the evaluation of I. This 
will be done for the evaluation of I on a grid of stepsize h. With t i  = ah, t = t,, 7 = 
R, = n/2, F, = F ( t i ) ,  mi = m(ti) and 

F(t')dt'/h dMi = l,:, m(t')dt'/h 
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Here and in the following the index q is dropped for simplification of the notation. 
C, is given by Fi for i = 2,.  . , , n - 1 and by dF;, dMi for i = 1,. , . , nz. Knowing 
the latter for i = 1,. . . , N, one can solve the equations recursively to get Fi,mi for 
i = Nz + 1,. .. ,2N,.  

The solution of (30) for F,, m, is elementary only for very special cases . In 
general another iteration is used: 

One can show that FAk) > FA"') > 0. Therefore the limit FA') -+ F, exists. The 
proof implies also F, > F,+, > 0 (Hofacker 1990). 

Having extended the solution with step size h from ( N / 2 )  points to N points, a 
decimation is carried out. One transforms: h -+ 2h, Fzi -+ Fi, dF; + d F y w ,  dM; -+ 
d M y w .  Here 

d F y w  = ( dFzi + dFZj+,)/2 i 4 N / 4  (35) 

d F r W  = (Fz; + 4FZ6-, + Fzi-z)/6 (36) i > N / 4  

and corresponding formulae hold for d M y w ,  The whole procedure is started with 
N / 2  points, which are calculated from the short time expansions, discussed above in 
connection with (16). 

The results to be shown below are evaluated typically with N = 600. In the 
first step either (16) or extension by one more term are used. The achieved relative 
accuracy was better than The calculation were done on an IBM-AT. For the 
M = 1 models two minutes calculation time were used per decade. The computation 
time is of the order O ( N M 2 ,  N ' M ) .  

4. Examples for mode coupling theory results 

Simple MCT models deal with a single correlator: M = ~1.  In this case the mode 
coupling functional is a polynomial of degree N : +(f) = u,f + uzf2 + . . , + u N f N .  
The vector in control parameter space combines the coefficients V = (U,,. . . , uN). If 
one specializes further to  a monomial like T ( f )  = uzf2 (Leutheusser 1984, Bengtzelius 
ef al 1984), the scaling equation (17) and (18) is solved readily, albeit by a Debye 
function: F ( f )  = f,exp(-i). These models are the only ones, where the a-process is 
described as stochastic relaxation. These non-generic specializations miss the essential 
feature of glassy dynamics, viz., the stretching. The most simple meaningful model 
uses a twedimensional control parameter space by specializing (Gotze 1984). 

FF(f) = U l f  + vzf2 .  (37) 

The master functions in this case are very close to the Kohlrausch results (DeRaedt 
and Gotze 1986, Gotze and Sjogren 1987a). This is demonstrated in figure 8 for a 
representative example. The master functions follow (1) for a large dynamical range. 
More than the upper 98% of the a-peak is determined accurately by the stretched 
exponential decay. The von Schweidler law is valid only for very large frequencies 



F 

0.1 

0. I 

a-peak shapes for relamtion in supercooled liquids 5063 

/ I O '  10' 7 

0. I 

0. I 

Figure 8. Mmteiterfunctim F ( i ) ,  reactive part of 
the suaceptibility XI(";) and susceptibility spec- 
trum x''(&) for the model (37) ; X = 0.7, f' = 
0.3, y = 0.816, 9 = 2.041. The broken 
mea are Kohlram& functions with exponent 
@ = 0.59. The dotted curyes are the yon Schwei- 
der asymptotes with exponent b = 0.64. The 
chain -e in (c )  is a Debye resonance, shifted 
so lls to fit the low frequency part of x"(G). 

Figure 9. Master functions for the second come 
lator of the two component model (30) for v. = 8. 
The results for the fvat comelator M shown in 
figure 8. The broken curves M KohLswh fun- 
tiom with exponent @ = 0.80. The dotted "es 

are the yon Schveidler asymptotes for exponent 
b = 0.64. The chain curve in (c )  is a Debye r e s  
nance. 

log6 > 1.5. It describes only that part of the high frequency a-peak wing, where 
x"(w)/xg, < 0.2. Only the first 10% of the decay of F(c) follows (2) in this case. 

The simplest two component model leaves the equation of motion ofone correlator, 
say @(t) with a-relaxation master function F(f), unchanged. The mode coupling 
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functional of the second correlator, say @s(t ) ,  with cr-relaxation master function F8(i ) ,  
is governed by the simplest polynomial (Sjogren 1986) 

F* = V * f f # .  (38) 

Figure 9 exhibits the master functions for w, = 8, wing the results of figure 8 as input 
for f. The susceptibility spectrum x: for large frequencies is above the one produced 
by the best Kohlrausch fit. The von Schweidler law has a large range of validity. It 
accounts well for the high frequency a-peak tail, where x"(w)/xg, < 0.5. Formula 
(2) describes 20% of the initial decay of F$). The spectrum ~ " ( w )  in figure 9 shows 
the qualitative features discussed above in connection with figures 1-3. A quantitative 
fit of the quoted data is not possible by the model (38). The rmnance for x: is too 
narrow and the Debye law describes the low frequency part of the spectrum too well 
in comparison to what is shown in figures 1-3. 

The simplest relevant model, specializing the quadratic mode-coupling functional 
(9), deals with two correlators and uses for p = 0,1 the following formulae (Krieger 
and Bosse 1987) 

Fo(f0,fi) = wofi  + qf? 31(fOrf1) = w.fofl. (39) 

The control parameter space has three dimensions: V = (wo,wlr w,), This model ex- 
hibits the line crossing phenomenon (Gotze and Haussmann 1988). The phase diagram 
in figure 6 was evaluated for this model for the cut through K with us = 50. At the 
shown crossing point one gets for the two exponent parameters A(') = 0.63,A(') = 0.67 
and the form factors have the values: fA1) = 0.070, fj') = 0.714, fc) = 0.423, fy) = 
0.953. The master functions shown in figure 7 refer to this model where the parameter 
points are indicated by the various symbols in figure 6. The a-peaks for model (39) 
and also the main peak of the double peak pattern, have a signature similar to that 
shown in figure 9. 

Schematic models of the kind listed above have been invented to demonstrate with 
a minimum of mathematical effort some generic features of the MCT. Such models im- 
ply also additional results like deviations from asymptotic scaling laws. Those results 
are not necessarily representative for the full theory as specified by (9). Examples 
for such artifacts of schematic models are the connection f, = 1 - A,  which follows 
from (37), or the narrowness of the ,y:-peak in the model (38). It should be of no 
surprise, that none of the so far studied schematic models can account quantitatively 
for the data quoted in figures 1-5. It seems of some interest to know, however, which 
effort has to be made within the mathematical theory in order to fit relevant data  
quantitatively. This is the motivation to consider an A4 = 3 model. The mode cou- 
pling functional (9) for three correlators, labelled by p = 0,1,2, shall be specialized as 
follows: 

In this case the dimensionality of K is five: V = (wo,  w l r  U*, wsl,  w,'). The model (39) is 
obtained as limit for w ,  = 0. Previously invented tricks (Gotze and Haussmann 1988) 
can be used to calculate simply the bifurcation hypersurface 71, the form factors at 
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the transitions f;, the critical amplitudes h, and also the expression for the exponent 
parameter: 

(42) A =  (1 - fo)" b o  + ( ~ / G ) ( u ~ / u %  + d 7 ~ 3 1  

1 +2((1-  1o)/fo)~(v1/t*,i + v z / w J  

Crossing singularities occur if ws1 or 
Data fits with (40) and (41) have been performed using the correlator for q = 

0. Fits were started by reading off the von Schweidler exponent b according to (2) 
from a Iogx'' versus logw diagram for the data. This information restricts V to a 
three-dimensional subset of the transition hypersurface. As a second step, the large 
frequency part of the a-peak was fitted with U,, = v2 = 0. Then U, was switched on 
to improve the agreement between fit and data. 

The full curves in figures 1-3 show results for (40) and (41). The fit for the CKN- 
data in figure 1 was made for the absorptive part of the modulus M"(w). Comparison 
of the theoretical results for M'(w)  with the data for the reactive part demonstrates 
the consistency of the procedure. The parameter values used are X = 0.82(6 = 
0.44), v,, = 2.88, = 0.195, v2 = 0.032, uSl = 20, U,, = 45. The fit for the 
PVA spectrum in figure 3 was done with the same exponent parameter A, using u0 = 
2.81, v1 = 0.212, v2 = 0.04, val = 17, vS2 e 45. The fit Cor OT in figure 2 refers to 
the values X = 0.84(b = 0.41),u0 = 2.86, v1 = 0.174, u2 = 0.08, vS1 = 15.2, va2 = 30. 

The full curve in figure 4 was calculated for v,, ,= 2.89, v1 = 0.193, v2 = 
0.041, v,] = 17, vsz = 144. This yields A = 0.86, i.e. b = 0.375. In figure 10 
the three correlators F,(i) and susceptibility spectra xy are shown. The PPG data 
of Fu et a1 (1991) can be fitted reasonably with parameters close to those c h e  
sen for the data of Johari (1986). The full curves in figure 10 are calculated for 
v 0 -  - 2.93, u1 = 0.191, U, = 0.0355, vsl z 18, vn2 = 161. This corresponds to 
an exponent parameter X = 0.87 implying a von Schweidler exponent 6 = 0.357. In 
order not to overload the figure, only the data for two temperatures are reproduced. 
One notices that the high frequency data in figure 11 deviate somewhat from the von 
Schweidler asymptote. This effect would show up more drastically if data for lower 
temperatures were included in the figure, thereby extending the dynamical window for 
the rescaled frequency. A possible reason might be phonon assisted hopping transport. 
This relaxation mechanism is not included in the theory for the idealized transition 
studied in this paper. 

The MCT predicts a relation between the anomalous dimensionality b of the spec- 
trum and the exponent 7, ruling the a-relaxation scale. This was discussed above in 
connection with (13). The mentioned value of b for PPG yields 7 = 3.54. A U!,!' versus 
T plot, with w, = we denoting the maximum peak position, should give a straight 
line, which intersects the abscissa for T = T,. Figure 12 shows indeed, that the power 
law variation for tb is observed for the large temperature interval 260 K < T < 360 K. 
The power law prediction for the e-relaxation scale and the connection between the 
two exponents b and 7 describes properly the shift of the resonance by a factor 500. 
The critical temperature is estimated as T, = 237 K. This estimate has to be taken 
with reservation. Since T, is a crossover temperature from liquid to glass dynamics, a 
reliable estimate should be based on a quantitative analysis of data measured above 
as well as below T,. 

The MCT for the idealized liquid to glass transition becomes partly irrelevant for 
experiments referring to temperatures at or below T,. This is obvious from figure 12. 

exceed vc = 24.78. 
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Figure 10. Normalized msster Iunctbns Fq/ fq  and spectra x y / l q  for model (40), 
(41). The parameters M specified in the text .  The formIactom are f g  = 0.206, ft = 
0.715, f; = 0.966. XC is the spectrum shown also in tigum 4. 

The frequency w, does not vanish for U cx T, - T -+ 0 according to  (13), rather it 
crossesover to some different law for T < T,. Phonon assisted transport is the physical 
mechanism, which prevents the idealized arrest for T < T,. The equations for the a- 
peak shapes, which include the mentioned processes, have not been studied in sufficient 
detail yet. It is known that the simple scaling law (5) may become invalid for T < T,. 
The von Schweidler law (2) describes the high frequency a-process also for T < T, 
albeit with a temperature dependent exponent 6 (Gotze and Sjogren 1987b,1988). 
The MCT has not yet produced a handy formula to describe the a-relaxation scale 
w, for T m  T,. I t  is well known, that the Vogel-Fulcher formula fits relaxation scale 
variations over many decades properly. This is the case also for the PPG data under 
discussion; w, a exp(-985/((T/K) - 171)) accounts for the experiments of Fu el a1 
(1991) perfectly. The MCT results for the a-peak shapes, discussed in this paper, can 
be used only, if phonon assisted hopping effects do not influence the master functions 
strongly. This is the case, if the time temperature superposition principle is valid. 
Then one can extrapolate the data into the region T > Tc, where the theory for the 
idealized transition is proposed to apply. 

The %component model (40) and (41) is also the simplest example producing a 
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Figure 11. Normalized results for reactive and absorptive paW of the dielectric 
function of PPG as measured by Fu (19Eo) and hi et al (1991) for T = 227.4 K, 
wm.= = 13.5 Hz (squares) and T = 253.6 K, wmax = 3280 HE (diamonds). The full 
c w e s  are MCT results for model (40) and (41) with parsmeters explained in the 
text. The dotted CUTM is a von Schweidler asymptote for exponent b = 0.36. 

triple peak. Figure 13 shows a spectrum for parameters chosen close to a three surface 
corner: uo = 3.37, u1 = 0.086, v2 = 0.063, u,l = 22, uS2 = 88. 

Finally we want to re-emphasize that the number of peaks in the spectrum is a 
consequence of the topology of the bifurcation hypersurface 71. In order to obtain an 
n-peak spectrum, the dimensionality N of the control parameter space IC must not 
be smaller than n. The number M of correlators is not essential. For example a one 
component model with F(f) = uzf2 + u N f N  can produce a double peak provided 
N 10. 

5. Conclusions 

The a-process is a general feature of glassy dynamics observed in a variety of sub- 
stances ranging from the molten salt CKN to polymers with large molecular weights. 
Therefore it seems desirable to interpret this phenomenon in a general way, that  tran- 
scends the details of the molecular structure and does not require specific models for 
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Figure 12. U!,!' verms temperatum for the data measured by Fu (1990) and Fu et 
a/ (1991) for PPG. is the a-peak position in Hz. y = 3.54. The straight Line is a 
guide for the eye. 

x" 
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Figure 13. Susceptibility s p e c t m  of the 3 mmpOnent model (40) and (41) with 
parametcm specified in the text. 

the microscopic details (Johari 1986). The MCT for the idealized liquid to glass tran- 
sition is such a general approach. It is based on transparent equations of motion for 
a set of correlation functions which characterize the dynamics in a statistical manner. 
These equations are completely regular; the essence is a mode coupling functional, 
which is a polynomial of the correlators. But the equations are non-linear. There 
appear various bifurcation singularities; the simplest one describes a transition from 
liquid behaviour to ideal glass dynamics. The singularities cause subtle anomalies for 
the long time dynamics. The novel results for the dynamics are due to the retardation 
effects. The qualitative features of the singularities reflect the topology of the bifur- 
cation hypersurface. Therefore the results are stable with regard to modifications of 
the theory; they can be understoud qualitatively and, to a large extent, even quan- 
titatively by analytic calculations. In this paper it was shown, that the MCT picture 
for the a-process exhibits the same subtleties as the experiments. 

Within the MCT the von Scbweidler law appears as the reason for the generally 
observed stretching of the a-process. It describes the dynamics for times which are 
short compared to the relaxation time 7 of the a-process, but long compared to the 
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time scale for the P-dynamics. It accounts for the high frequency wing WT >> 1 of the 
a-peaks. No stretching anomaly appears in the theory nor in the experiments on the 
low frequency wing WT < 1 of simple eresonances. The Kohlrausch fit accounts well 
for the spectra for WT *: 1 for trivial reasons. It describes properly the upper half 
of the resonances, since it implies also a crossover to power law spectra for WT >> 1. 
Occasionally the Kohlrausch fit accounts for the major part of the a-resonance. Also 
the most simple example for the MCT exhibits this result as shown in figure 8. In 
this case, the von Schweidler law holds only for very large frequencies, so that it can 
hardly be identified in the spectra. 

Kohlrausch fits are usually optimized for the upper part of the a- resonance. The 
exponent P in the stretched exponential law is in one to one correspondence to the 
peak half width. As a typical result one finds in the MCT as well as in experiments, 
that the Kohlrausch fit fails in the high frequency wing where x"/x,, < 0.2. This 
occurs in particular in those cases where corrections to the von Schweidler asymptote 
are so smaU that (2) accounts for the whole region w/w,, > 1. The range of validity 
of the von Schweidler law is different for different correlation functions measured for 
the same transition. For that reason also, the Kohlrausch exponent f i  may be different 
for different spectra referring to the same system. Within the MCT the Kohlrausch 
exponent p is a mere fit parameter without any mathematical or physical significance. 
The anomalous dimensionality b of the von Schweidler process appears, on the other 
hand, as a critical parameter specifying the dynamics. It is the same for all correlators 
of the given system. But different systems exhibit different exponents 6.  

The inadequacy of the Kohlrausch fit for a-peaks of dielectric loss spectra was 
recently demonstrated for a variety of organic glass formers by Dixon et a1 (1990). 
For most of the systems they studied also strong violations of the time temperature 
superposition principle were detected. The peak half width increased with decreasing 
temperature. However, the authors discovered a new scaling relation, allowing them 
to describe all their spectra from one single master function. The new feature of their 
master function is the behaviour of the high frequency tails. This is deduced from data 
where the a-peak position is in the low frequency band. These data refer presumably 
to a region T < T,. For T < T, the MCT also predicts violations of the simple 
a-scaling. But since the a-peak equations for T < T, (Gotze and Sjogren 1987b) 
could not yet be solved it is unclear whether the MCT can reproduce the important 
discoveries of Dixon et a! (1990). 

Double peak relaxation patterns are a generic implication of the MCT. They are 
caused by corners of the boundary between liquid and glass states. Even simple spe- 
cializations of the MCT equations show this phenomenon, since even simple models 
exhibit the topological feature of the crossing of bifurcation hypersurface pieces. There 
are two possibilities for liquid to glass crossovers near such crossing singularities. One 
explains the ah -doub le  peak and the other causes the pattern of an ay -peak  pair. 
There may also be corners, where three pieces of the bifurcation hypersurface inter- 
sect. Generically, a system may come close to such corner. In case there are three 
stretched susceptibility peaks leading e.g. to the a-7-&peak scenario. A double peak 
susceptibility spectrum is equivalent to a double step behaviour of the reactive re- 
sponse x ' ( ~ ) ,  as shown in figure 11. The size of the two steps Ax due to the a'- and 
the a-peak respectively is given by the areas of the respective spectral peaks. Suppose, 
one measures x'(wo) for a fixed test frequency wo as function of temperature. One 
gets a step Ax' at a temperature Ti, when wb(T') = wo. A second step occurs at 
a temperature Tg < Ti, if w,(T,) = w,,. These steps describe the transformation of 
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the supercooled liquid into the glass state in a conventional quenching experiment. A 
simple a-peak describes this transformation as an one step process at T9, while the 
double peak scenario is connected to a two step transformation. The conventional 
transformation temperature refers to the usual scanning speed of 0.3 K/min and this 
corresponds to U,, - _ _  Many experiments have been identified by 
Boyer (1985), showing such two step glass transformations; he refers to Ti as liquid 
to liquid transition temperature TI. The double peak phenomenon appears as the 
natural explanation of those experiments. It seems worthwhile to test this suggestion 
by spectroscopy. For those examples where the double step wa5 identified in the dif- 
ferential analysis curves for the specific heat, the recently developed heat spectroscopy 
(Birge and Nagel 1985) might be the appropriate technique. 

The shown fits of experiments by the master functions of a simple schematic model 
demonstrate, that there is no feature in the quoted data which is not properly inter- 
preted by the MCT. However, these fits do not imply a physical understanding of the 
difference of the dynamics of, say, the anorganic glass former CKN and the polymer 
PPG. The microscopic differences between various systems enter the vertices V(q;  k , p )  
in (9). These vertices are given by the equilibrium structure of the liquid as reflected 
by static correlations between pairs and triples of the constituents. Thus, there is the 
perspective, that the MCT can explain the microscopic origin of the various a-peak 
shapes. Progress in this direction will depend on whether one can calculate the ver- 
tices and understand their properties for realistic systems. So far the vertices and the 
path of the system in control parameter space X: have been calculated only for simple 
one component systems of spherical atoms (Bengtzelius et a[ 1984, Bengtzelius 1986) 
and for simple binary mixtures ( B e  and Thakur 1987, Barrat and Latz 1988). The 
integration procedure developed in this paper opens the possibility of calculating the 
a-relaxation master functions for those model systems. 
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